Rules for transforming words into math

1. **Not** event A: A^c.

2. Events A and B both occur: $A \cap B$, the intersection of A and B.

3. Event A or B occurs: $A \cup B$, the union of A and B.

4. $A \cap B \subseteq A \cup B$. This means that $A \cap B$ is generally a smaller set than $A \cup B$ (though they can be equal). This is because membership in $A \cap B$ is more restrictive than membership in $A \cup B$.

5. **Exactly one** of the events A or B occurs.
 This is the exclusive or. It means that A or B occurs, but not both. In other words, the event that A and B occur is not allowed. In terms of sets,
 \[
 \text{Exactly one event:} \quad (A \cup B) - (A \cap B) = (A - B) \cup (B - A)
 \]

 Note: If you see the word and connected with two events, think intersection. If you see the word or in connection with two events, think union.

6. **Neither** event A nor event B occurs: this is the same as “A does not occur and B does not occur” = $A^c \cap B^c$.

7. When solving probability word problems:
 - **Step 1:** Write down the events of interest in the problem.
 - **Step 2:** Write down the given information in terms of the events.
 - **Step 3:** Write down what you’re looking for.

Definition: The set of all possible outcomes of an experiment is called the **sample space** for the experiment. The outcomes in the sample space are called the sample points.

Definition: An **event** is a subset of the sample space of an experiment. An event E is said to occur if the outcome of the experiment is an element of E.

Definition: Two events E and F are **mutually exclusive** (disjoint) if $E \cap F = \emptyset$.

Definition: The events E_1, \ldots, E_n are mutually exclusive if no two of the events can occur at the same time.