Mathematics for Business Decisions, Part I

Homework Set 8: Introduction to Random Variables, Expected Value, and Variance

Solutions

NOTE: For more practice problems with solutions, see my practice problem sets and my class notes handout.

Recall: Let \(X \) be a random variable with range \(\{x_1, x_2, \ldots, x_n\} \), where \(x_1 < x_2 < \cdots < x_n \). Then

\[
\mu_X = E(X) = \sum_{i=1}^{n} x_i f_X(x_i) \quad \text{(Expected Value formula)}
\]

\[
\sigma_X^2 = V(X) = \sum_{i=1}^{n} (x_i - \mu_X)^2 f_X(x_i) \quad \text{(Variance formula);} \quad \sigma_X = \sqrt{V(X)} \quad \text{(Standard Deviation)}
\]

The standard deviation is a weighted average, and can be thought of as the average distance from the mean. Let \(X \) be a random variable. If \(\sigma_X \) is small (much less that one), then we are likely to observe \(X \)-values close to the mean \(\mu_X \). Conversely, if \(\sigma_X \) is large (much greater that one), then we are likely to observe \(X \)-values far from the mean \(\mu_X \).

Elementary-Level Problems

Problems 1-2 Consider the experiment of flipping a coin and then rolling a die. To each outcome in the sample space we assign the number

\[X = \text{number of heads times the face value of the die} \]

Notice that \(X \) is a random variable.

1. Write down the sample space \(\Omega \) (the set of all possible outcomes of the experiment).

Solution: \(\Omega = \{(H,1), (H,2), (H,3), (H,4), (H,5), (H,6), (T,1), (T,2), (T,3), (T,4), (T,5), (T,6)\} \)

2. Write down all the possible events \(X = x \), and give the probabilities associated with each of the events.

Solution: To find the range of \(X \), it helps to explicitly write out the formula for \(X \) in the case of heads and tails separately. If the coin toss results in heads, then \(X((H,i)) = 1 \cdot i \), for \(i = 1,2,3,4,5,6 \). If the coin toss results in tails, then \(X((T,i)) = 0 \cdot i = 0 \), for \(i = 1,2,3,4,5,6 \). Thus the range of \(X \) is \(R_X = \{0,1,2,3,4,5,6\} \). We now write out the associated probabilities:

\[
P(X = 0) = P(\{(T,1), (T,2), (T,3), (T,4), (T,5), (T,6)\}) = \frac{6}{12} = \frac{1}{2}.
\]

\[
P(X = i) = P((H,i)) = \frac{1}{12} \quad \text{for } i = 1, 2, 3, 4, 5, 6.
\]

Notice that the sum of all of the probabilities is one: \(\sum_{i=0}^{6} P(X = i) = 1 \).
Problems 3-6 Consider the experiment of flipping a coin two times. Let \(H \) be the event that a toss turns up heads and \(T \) be the event that a toss turns up tails. To each outcome in the sample space we assign the number

\[
X = \text{number of heads in two tosses} - \text{number of tails in two tosses}.
\]

Notice that \(X \) is a random variable.

3. Write down the sample space \(\Omega \) (the set of the four possible outcomes of the experiment).

\textbf{Solution:} \(\Omega = \{(H,H), (H,T), (T,H), (T,T)\} \)

4. Write down all the possible events \(X = x \), and give the probabilities associated with each of the events.

\textbf{Solution:} To find the range of \(X \) it helps to explicitly write out the formula for \(X \). If the coin toss results in two heads, then \(X((H,H)) = 2 - 0 = 2 \). If the coin toss results in one head and one tail in either order, then \(X((H,T)) = X((T,H)) = 1 - 1 = 0 \). If the coin toss results in two tails, then \(X((T,T)) = 0 - 2 = -2 \). Thus the range of \(X \) is \(R_X = \{-2, 0, 2\} \). We now write out the associated probabilities:

\[
f_X(-2) = P(X = -2) = P((T,T)) = \frac{1}{4}.
\]

\[
f_X(0) = P(X = 0) = P((H,T), (T,H)) = \frac{2}{4} = \frac{1}{2}.
\]

\[
f_X(2) = P(X = 2) = P((H,H)) = \frac{1}{4}
\]

Notice that the sum of all of the probabilities is one: \(\sum_{i=1}^{3} P(X = x_i) = 1 \), where by convention we take \(x_1 = -2 \), \(x_2 = 0 \), and \(x_3 = 2 \).

5. Compute the expected value of \(X \).

(a) -2 (b) -1 (c) 0 (d) 1 (e) 2 (f) none of these

\textbf{Solution:} \(\mu_X \equiv E(X) = \sum_{i=1}^{n} x_i f_X(x_i) = (-2) \frac{1}{4} + (0) \frac{1}{2} + (2) \frac{1}{4} = 0 \).

6. Compute the standard deviation of \(X \).

(a) -2 (b) \(3\sqrt{2} \) (c) 0 (d) 2 (e) \(\sqrt{2} \) (f) none of these

\textbf{Solution:} \(\sigma_X^2 \equiv V(X) = \sum_{i=1}^{n} (x_i - \mu_X)^2 f_X(x_i) = (-2)^2 \frac{1}{4} + (0)^2 \frac{1}{2} + (2)^2 \frac{1}{4} = 1 + 1 = 2 \). The standard deviation is \(\sigma_X = \sqrt{2} \).
7-12. (Random Variables and Expected Values) \(X \) is a random variable that can only assume the values given in the table below. The corresponding probabilities are also listed in the table.

<table>
<thead>
<tr>
<th>(X)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_X(x) = P(X = x))</td>
<td>.1</td>
<td>.1</td>
<td>.3</td>
<td>.3</td>
<td>.1</td>
<td>.1</td>
</tr>
</tbody>
</table>

7. What is the range (the allowable values of \(X \)) of the random variable \(X \)?

Solution: We can read the range of \(X \) straight off of the table above: \(R_X = \{0,1,2,3,4,10\} \). By convention we let \(x_1 = 0 \), \(x_2 = 1 \), \(x_3 = 2 \), \(x_4 = 3 \), \(x_5 = 4 \), and \(x_6 = 10 \). We will use this in the formulas below.

8. Find \(P(3 \leq X < 7) \).

(a) 0 (c) .2 (e) .4 (g) .6 (i) .8 (k) 1
(b) .1 (d) .3 (f) .5 (h) .7 (j) .9 (l) none of the these

Solution: \(P(3 \leq X < 7) = P(X = 3) + P(X = 4) = .3 + .1 = .4. \)

9. Find the probability that \(X \) is at least 6.

(b) 0 (c) .2 (e) .4 (g) .6 (i) .8 (k) 1
(b) .1 (d) .3 (f) .5 (h) .7 (j) .9 (l) none of the these

Solution: \(P(X \geq 6) = P(X = 10) = .1 \)

10. Find the probability that \(X \) is at most 6.

(a) 0 (c) .2 (e) .4 (g) .6 (i) .8 (k) 1
(b) .1 (d) .3 (f) .5 (h) .7 (j) .9 (l) none of the these

Solution: \(P(X \leq 6) = 1 - P(X > 6) = 1 - P(X = 10) = 1 - .1 = .9. \)

11. Find \(E(X) \). The formula for expected value is \(E(X) = \sum_{i=1}^{n} x_i P(X = x_i) \).

Solution:
\[
E(X) = \sum_{i=1}^{n} x_i P(X = x_i) = 0(.1) + 1(.1) + 2(.3) + 3(.3) + 4(.1) + 10(.1) = .1 + .6 + .9 + .4 + 1 = 3
\]

12. Find \(V(X) \). The formula for variance is \(V(X) = \sum_{i=1}^{n} (x_i - \mu_X)^2 P(X = x_i) \).

Solution:
\[
V(X) = \sum_{i=1}^{n} (x_i - \mu_X)^2 P(X = x_i) = 0^2(.1) + 1^2(.1) + 2^2(.3) + 3^2(.3) + 4^2(.1) + 10^2(.1) \\
= .1 + 1.2 + 2.7 + 1.6 + 10 = 15.6
\]
Problem 13. (Expected Value) You have been given the opportunity to invest in two different companies: company A and company B. Both companies are reputable, and each is working on potentially important scientific projects. If you invest in company A there is a 30% chance that you lose $30,000, a 50% chance that you break even, and a 20% chance that you make $70,000. If you invest in company B there is a 20% chance that you lose $75,000, a 70% chance that you break even, and a 10% chance that you make $150,000. Based on the expected value of each, which investment should you make?

Solution:

Step 1: Define the events: let

\[X_A \] = return on investment in company A (profit, which could be negative in the case of a loss)
\[X_B \] = return on investment in company B

Step 2: Write down the given information:

- Range of \(X_A \) = \{-30,000, 0, 70,000\}
- Range of \(X_B \) = \{-75,000, 0, 150,000\}
- The probabilities associated with each of these values are:
 - \(P(X_A = -30000) = .3 \)
 - \(P(X_A = 0) = .5 \)
 - \(P(X_A = 70000) = .2 \)
 - \(P(X_B = -75000) = .2 \)
 - \(P(X_B = 0) = .7 \)
 - \(P(X_B = 150000) = .1 \)

Step 3: Write down what you are trying to solve for:

Compute the expected returns:

\[
E[X_A] = -30000 \cdot P(X_A = -30000) + 0 \cdot P(X_A = 0) + 70000 \cdot P(X_A = 70000)
\]

\[
= -30000 \cdot (.3) + 0 \cdot (.5) + 70000 \cdot (.2)
\]

\[
= -9000 + 14000 = 5000
\]

\[
E[X_B] = -75000 \cdot P(X_A = -75000) + 0 \cdot P(X_A = 0) + 150000 \cdot P(X_A = 150000)
\]

\[
= -75000 \cdot (.2) + 0 \cdot (.7) + 150000 \cdot (.1)
\]

\[
= 0
\]

Based on the expected returns, you should invest in project A.
Problem 14. (Expected Value) The Fair & Selfless insurance company charges a 40-year-old man $200 for a 1-year term life insurance policy that will pay the beneficiary $10,000 if the man dies within the year. Assuming the probability that a 40-year-old man will die during the next year is known to be .001, and that the $200 premium paid at the beginning of the year will be invested over the period of the entire year at 10% compounded monthly, determine the expected profit at the end of the year, per policy, if the insurance company sells many such policies.

Solution: Let X be the random variable representing the net profit to the insurance company. Let R be the revenue (the return) on a single policy and C be the cost of a single policy to the insurance company. The cost is the payout by the insurance company to the policy holder. The return is a constant, namely 200 dollars plus interest made over the year from the investment, but the cost is a random variable. A policy can cost the company $0 or $10,000, depending on the outcome: either there is no cost to the insurance company if the individual lives through the year, or there is a payout of 10,000 dollars if the individual dies. Thus,

Range of $C = \{0, 10,000\}$,
with the associated probabilities

\[
P(C = 0) = 1 -.001 = .999, \quad P(C = 10,000) = .001.
\]

The expected cost to the company is

\[
E(C) = \sum_{i=1}^{2} x_i P(C = x_i) = 0(.999) + .001(10,000) = 10
\]

The net profit can then be expressed as

\[
X = R - C = P\left(1 + \frac{r}{n}\right)^n - C,
\]

where $P = 200$, $r = .10$, $n = 12$, and $t = 1$ year. Substituting in the numbers yields

\[
X = 200\left(1 + \frac{1}{12}\right)^{12} - C \approx 221 - C.
\]

Fact: If X is a random variables and α is a constant, then

\[
E(X + \alpha) = E(X) + E(\alpha) = E(X) + \alpha E(1) = E(X) + \alpha.
\]

Using this formula, we see that the expected profit to the company is

\[
E(X) = E(221 - C) = 221 - E(C) = 221 - 10 = 211.
\]

If you don't like using this formula, there is a second way to compute the result. Notice that the range of X can be expressed as

Range of $X = 221 - \text{Range of } C = \{221 - 0, 221 - 10,000\} = \{221, -9779\}$

with the associated probabilities:

\[
P(X = 221) = 1 -.001 = .999, \quad P(X = -9779) = .001.
\]

We can now compute the expected return directly.

\[
E(X) = \sum_{i=1}^{2} x_i P(X = x_i) = 221(.999) - 9779(.001) = 211.
\]
Problems 15: (Expected Value) Let \(X \) be the number of children in a household in Manhattan. In a certain year the U.S. Census reported that \(X \) has the probability distribution given in the table below:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4 and up</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(X=x))</td>
<td>0.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.099</td>
<td>0.001</td>
</tr>
</tbody>
</table>

15. What is the approximate average number of children in a household in Manhattan?

Solution: \(E(X) \approx (0)(.3) + (1)(.4) + (2)(.2) + (3)(.099) + (4)(.001) = .4 + .4 + 3(.1) + .001 = 1.101 \)

Note: You might be wondering why I keep using the word “approximate” with expected value and standard deviation. The reason is that in all of the calculations, I have had to replace the phrase “4 and up” by a number. Given the incomplete data set, I have chosen to assume that most of the families that fall under the category of “4 and up” are 4-child families. However, this assumption could be way off, it maybe that most of the families in the category of “4 and up” are 5-child families, or even worse: 10-child families! However, since the probability of such a large family is so small, the error that I make by assuming all of the “4 and up” families are just 4-child families will be small.

Problem 16: (Expected Value) Hurricanes are classified by categories that are based on wind speeds, where a category 1 hurricane has the lowest wind speeds, and a category 5 hurricane has the highest wind speeds. Let \(X \) be the category of a hurricane that has hit the U.S. mainland. According to USA Today’s Weather Almanac, \(X \) has the probability distribution given in the table below:

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(X=x))</td>
<td>0.372</td>
<td>0.229</td>
<td>0.288</td>
<td>0.098</td>
<td>0.013</td>
</tr>
</tbody>
</table>

What is \(E(X) \)?

Solution: \(E(X) = (1)(.372) + (2)(.229) + (3)(.288) + (4)(.098) + (5)(.013) = 2.151 \)

Problem 17: (Expected Value) A ticket for a certain state lottery costs \$1. Each ticket has a probability of 0.01 of winning \$10, a probability of 0.001 of winning \$100, and a probability of 0.0000001 of winning \$1,000,000. If 10,000,000 tickets are sold, what profit can the state expect to make? (Hint: Look at the expected profit on a single ticket.)

Solution: Let \(X \) be the random variable that gives the state’s net profit on a single ticket. Let \(R \) be the revenue (the return) on a single ticket and \(C \) be the cost to the state of a single ticket. The cost is the payout by the state to the ticket holder. The return is a constant, namely 1 dollar, but the cost is a random variable. The payout on a ticket can cost the state 0, 10, 100, 1,000,000 dollars. Then \(X = R - C = 1 - C \). Thus

Range of \(C = \{0, 10, 100, 1,000,000\} \). Subtracting off the value of \(C \) from the ticket price of 1 dollar gives the range of the net profit random variable.
The expected profit on a single ticket is then

\[E(X) = \sum_{i=1}^{4} x_i P(X = x_i) = 1(.9889999) - 9(.01) - 99(.001) - 999,999(.0000001) = .70. \]

Note: If we let \(X \) be the random variable that gives the net profit on a single ticket to the ticket holder, and let \(R \) be the random variable that gives the revenue (the return) on a single ticket to the ticket holder, then \(X = R - C \), where \(C \) is the cost of a single ticket to the ticket holder. A ticket can return \{0, 10, 100, 1,000,000\} dollars. The reader should verify that \(E(X) = -E(X) \).

Let \(P_{\text{state}} \) = net profit to the state from all of the ticket sales. If the state sells \(n \) tickets, then the expected net profit from all of the lottery tickets is \(E(P_{\text{state}}) = E(nX) = nE(X) \). In our case the state should expect to bring in 10,000,000 (.7) = 7,000,000 dollars.

Problem 18: (Expected Value) An entrepreneur is planning to open a business either in the city or in a suburb. If he locates in the city, there is a 20% chance that he will suffer a loss of $20,000; a 50% chance that he will break even; and a 30% chance that he will make a profit of $100,000. In the suburbs, he has a 30% chance of losing $70,000; a 60% chance of breaking even; and a 10% chance of making a profit of $150,000. Where should he locate his business to maximize the expected value of his profit?

Solution:

Let \(X_C \) = return from the business if it is located in the city.
Let \(X_S \) = return from the business if it is located in the suburb.

Then

\begin{align*}
\text{Range of } & X_C = \{-20,000, 0, 100,000\}, \\
\text{Range of } & X_S = \{-70,000, 0, 150,000\},
\end{align*}

with associated probabilities:

\begin{align*}
P(X_C = -20,000) &= .2 & P(X_S = -70,000) &= .3 \\
P(X_C = 0) &= .5 & P(X_S = 0) &= .6 \\
P(X_C = 100,000) &= .3 & P(X_S = 150,000) &= .1
\end{align*}
Next, we compute the potential expected returns from each investment:

\[
E(X_c) = \sum_{i=1}^{3} x_i P(X_c = x_i) = (-20,000)(.2) + 0(.5) + 100,000(.3) = 26,000
\]

\[
E(X_s) = \sum_{i=1}^{3} x_i P(X_s = x_i) = (-70,000)(.3) + 0(.6) + 150,000(.1) = -6,000
\]

Since the expected return if the business is located in the city is much higher than the expected return from the suburbs (which is actually a loss), the entrepreneur would do best to open his business in the city.

Problem 19-21: (Expected Value and Variance) Below is the graph of the probability distribution of the random variable \(X\). Notice that the range of \(X = \{-3, -2, -1, 0, 1, 2, 3\}\).

19. Explicitly write out a table for the probability distribution: \(f_X(x_i) = P(X = x_i)\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_X(x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution:

<table>
<thead>
<tr>
<th>(x)</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_X(x))</td>
<td>.1</td>
<td>.1</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.1</td>
<td>.1</td>
</tr>
</tbody>
</table>

NOTE: the sum of all of the probabilities adds to one, as they must.

20. Compute the mean of the random variable \(X\).

Solution: \(E(X) = (-3)(.1) + (-2)(.1) + (-1)(.2) + (0)(.2) + (1)(.2) + (2)(.1) + (3)(.1) = 0\)
21. Compute the variance and standard deviation of the random variable X.

Solution: First compute the variance.

\[
V(X) = (-3)^2(.1) + (-2)^2(.1) + (-1)^2(.2) + (0)^2(.2) + (1)^2(.2) + (2)^2(.1) + (3)^2(.1)
\]
\[
= 2[(1)^2(.2) + (2)^2(.1) + (3)^2(.1)]
\]
\[
= 2[.2 + .4 + .9] = 3
\]

The standard deviation is

\[
\sigma_X = \sqrt{V(X)} = \sqrt{3}.
\]
22-23. Below are two graphs of the probability distributions of two random variables X (graph A) and Y (graph B). Notice that both graphs are symmetric about the origin.

22. By inspection (no computations), determine the expected values of two distributions. RECALL: The expected value is the center of mass of the probability distribution.

Solution: Clearly the graphs of the distributions of each of the random variables are centered about their respective origins. The center of mass is at the origin. Thus $E(X) = E(Y) = 0$.

23. By inspection (no computations), determine which random variable has the larger variance, and hence standard deviation. RECALL: The standard deviation is the average distance from the mean.

Solution: Clearly the graph of the random variable Y has a larger variance since its probability mass is further from the mean. (It has a larger moment of inertia about the axis $Y = \mu_Y$).
24. (Expected Value) The range of a random variable X is \{0, 1, 2, 3, 4, 5\}. Without knowing any of the probabilities associated with the events $X = x$, determine which of the following values are possible expected values for the random variable X. Circle your answer/answers (there may be more than one). **HINT:** Remember the center of mass analogy for expected value (the weights hanging from the stick). You can’t do any simple calculations here. This is a problem where you know it, or you don’t.

(a.) –13 (b.) 5.1 (c.) –0.1 (d.) 10 (e) 3.2

Solution: The expected value of X must lie somewhere between the minimum range value and the maximum range value. If

Range of $X = \{x_1, x_2, \ldots, x_n\}$, where $x_1 < x_2 < \cdots < x_n$, then $x_1 \leq E(X) \leq x_n$.

In our case, $x_1 = 0 \leq E(X) \leq 5 = x_6$. The only possibility is (e).

25. (Expected Value) Find the missing probability in the table below and use it to compute the expected value of X.

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X=x)$</td>
<td>0.2</td>
<td>0.1</td>
<td>.3</td>
<td></td>
<td>.2</td>
</tr>
</tbody>
</table>

Solution: Recall: The sum of all of the probabilities must be one. So if the range of X is \{x_1, x_2, \ldots, x_n\}, then $\sum_{i=1}^{n} P(X = x_i) = 1$. Thus $0.2 + 0.1 + 0.3 + P(X = 1) + 0.2 = 1$. Solving for $P(X = 1)$ yields $P(X = 1) = 1 - 0.8 = 0.2$. The expected value is $E(X) = -1(0.1) + 1(0.2) = 0.1$.