Solving linear 1^{st}-order Eqn.'s

The general form of a 1^{st} order linear eqn is

$$a_1(x) \frac{dy}{dx} + a_0(x) y = g(x) \quad (1)$$

Dividing (1) by the leading coeff. $a_1(x)$ will put the eqn in the standard form

$$\frac{1}{a_1(x)} \frac{dy}{dx} + \frac{a_0(x)}{a_1(x)} y = \frac{g(x)}{a_1(x)}$$

re-label

$$\frac{dy}{dx} + P(x) y = f(x) \quad \text{(Standard Form)} \quad (2)$$

We seek a sol'n on the largest interval I where both $P(x)$ and $f(x)$ are continuous. We cannot just integrate (2) as it stands. But what if $\frac{dy}{dx} + P(x) y = \frac{d}{dx} (H(x) y)$, then we could solve

solve (2) by integrating both sides:

$$\frac{d}{dx} (H(x) y) = f(x) \quad \rightarrow \quad H(x) y = \int f(x) dx \quad \rightarrow \quad y(x) = \frac{\int f(x) dx}{H(x)}.$$

However, $\frac{dy}{dx} + P(x) y \neq \frac{d}{dx} (H(x) y) = H(x) \frac{dy}{dx} + H'(x) y$.

But we're not sunk yet!

What if we tried multiplying $\frac{dy}{dx} + P(x) y$ by a fcn $\mu(x)$, called an integrating factor, that would convert $\frac{dy}{dx} + P(x) y$ into a perfect differential?

$$\mu \rightarrow \mu \frac{dy}{dx} + \mu P(x) y = H(x) \frac{dy}{dx} + H'(x) y$$

Equating coeffs:

$$\mu = H \quad \text{and} \quad H' = \mu P = P(x) H \quad (3)$$
We can solve for the unknown $H(x)$ (or equivalently, μ) in (3) using separation of variables.

\[\frac{d\mu}{dx} = P(x) \mu \]

Separate
\[\frac{d\mu}{\mu} = P(x) \]

Integrating factor (I.F.)
\[e^{\int P(x) dx} \]

Multiplying eqn (2) through by μ yields
\[\mu \cdot (2) \]

LHS
\[\frac{d}{dx} \left[e^{\int P(x) dx} y \right] = e^{\int P(x) dx} f(x) \]

By construction, the LHS of the previous eqn is a perfect differential
\[e^{\int P(x) dx} y = \int e^{\int P(x) dx} f(x) dx + C \]

Eqn (5) is the general solution since it contains one arbitrary constant of integration.
Comment: You should not solve problems in practice using formula (5), instead you should follow the procedure used to derive formula (5).

Outline of procedure:

Step 1: Put ODE in standard form: \(y' + P(x)y = f(x) \).

Step 2: After determining \(P(x) \), use it to generate the integrating factor \(\mu(x) \) via

\[
\mu(x) = e^{\int P(x) \, dx}
\]

(Note) The exponent should be a function of \(x \) with no arbitrary constant of integration in it.

Step 3: Multiply the ODE by the I.F. \(\mu(x) \) that you computed in step 2 and use the fact that the LHS is now a perfect diff.

\[
e^{\int P(x) \, dx} y' + e^{\int P(x) \, dx} P(x)y = e^{\int P(x) \, dx} f(x)
\]

\[
\rightarrow \quad \frac{d}{dx} \left[e^{\int P(x) \, dx} y \right] = e^{\int P(x) \, dx} f(x) \quad \text{(by construction the LHS of the eqn is a perfect diff.)}
\]

Step 4: Integrate both sides of eqn found in step 3 and solve for \(y \).
Instructions: Find the general soln to the following linear eqns. If any I.C. is given, then solve for the unique soln.

Example 1

Linear 1st-order ODEs

Solution:

\[\frac{dy}{dx} + 2y = 3 \] \(\text{(This is an equidimensional eqn)} \)

\[\text{(Could solve this using separation of variables.)} \]

Step 1

\[\frac{dy}{dx} + \frac{2}{x} y = \frac{3}{x} \] (1) \(\text{(Put in standard form: } P = \frac{2}{x}, \quad f = \frac{3}{x}) \)

Step 2

Find I.F.: \(\mu(x) = e^{\int \frac{2}{x} \, dx} = e^{2 \ln x} = e^{\ln x^2} = x^2 \).

Note: We did not add an arbitrary constant to the integrating factor.

Step 3

\[x^2 \frac{dy}{dx} + 2xy = 3x \]

\[\frac{d}{dx} (x^2 y) = 3x \]

\[\int x^2 y \, dx = \int 3x \, dx + c = \frac{3}{2} x^2 + c \]

\[y = \frac{3}{2} x + \frac{c}{x^2} \]

Example 2

Solve: \((1 + x) \frac{dy}{dx} - xy = x(x+1) \)

Step 1

\[\frac{dy}{dx} - \frac{x}{x+1} y = x \] (1) \(\text{(Standard form: } P(x) = \frac{-x}{x+1}, \quad f(x) = x) \)

Step 2

Compute I.F.: \(\int \frac{x}{x+1} \, dx = \int \frac{u-1}{u} \, du = u - \ln u = x + 1 - \ln(x+1) \)

let \(u = x+1 \), \(du = dx \) (for \(x > -1 \))

\[\mu(x) = e^{-\int \frac{x}{x+1} \, dx} = e^{-(x+1) \ln (x+1)} = e^{-(x+1)} \cdot e^{\ln(x+1)} = (x+1)e^{-x} \)

Step 3

\[(x+1)e^{-x} \frac{dy}{dx} - x e^{-x} y = x(x+1)e^{-x} \] \(\text{(This simplifies the eqn a little bit.)} \)

\[\text{Getting rid of unnecessary const.} \]

LHS is exact der:

\[\frac{d}{dx} [(x+1)e^{-x} y] = (x^2 + x)e^{-x} \] (Z)
Example 3

Solve \(y' = \frac{3e^y - 2x}{3} \). Notice that the ODE is non-linear in \(y \). However, if we invert the dependency from \(y \) as a function of \(x \) to \(x \) as a function of \(y \) (\(x = x(y) \), \(\frac{dx}{dy} \)) then the eqn is linear in \(x \).

\[
\frac{dx}{dy} = (3e^y - 2x) dy
\]

\[
\frac{dx}{dy} = 3e^y - 2x
\]

\[
\frac{dx}{dy} + 2x = 3e^y
\]

Let \(u(y) = e^{\int 2dy} = e^{2y} \) be the integrating factor.

\[
e^{2y} \frac{dx}{dy} + e^{2y} 2x = e^{2y} (3e^y) = 3e^{3y}
\]

\[
\frac{d}{dy} \left[e^{2y} x \right] = 3e^{3y} = \frac{d}{dy} (e^{3y})
\]

\[
\int dy \quad e^{2y} x = e^{3y} + c
\]

\[
\therefore e^{-2y} x = e^y + c e^{-2y}
\]

\[
\therefore x(y) = e^y + c e^{-2y}
\]

This is a good problem because it demonstrates that sometimes it may be very difficult or impossible to solve an ODE with independent variable \(x \), dependent variable \(y \), but by exchanging the roles of independent and dependent variables, the eqn can be solved.
Example 4: Show that all first-order linear homogeneous eqns.
can be solved using the method of separation of variables.

\[\frac{dy}{dx} + P(x)y = Q(x) = 0 \Rightarrow \frac{dy}{y} = -P(x)dx. \]
\[\int \ln |y| = \int P(x)dx + c, \quad e^{\ln y} = c \cdot e^{P(x)dx}. \]

Example 5: \(y \frac{dx}{dy} - x = 2y^2 \) with I.C. \(y(1) = 5 \). Solve for \(x \) as a function of \(y \).

Solution:

Step 1: Put in standard form: \(\frac{dx}{dy} + P(y)x = f(y) \).
\[\frac{dx}{dy} - \frac{1}{y} x = 2y \quad (P(y) = -\frac{1}{y}, \quad f(y) = 2y) \] (1)

Step 2: Compute I.F.
\[u = e^{-\int P(y)dy} = e^{-\ln y} = e^{\ln \frac{1}{y}} = \frac{1}{y} \]

\[\left. \frac{1}{y} \right|_{(1)} \frac{dx}{dy} - \frac{1}{y^2} x = 2 \]
\[\frac{d}{dy} \left(\frac{1}{y} x \right) = 2 \]
\[\int dy = \frac{1}{y} x = 2y + c \]

\[\rightarrow X(y) = 2y^2 + cy \] (2)

To determine the constant in eq 2, we apply the I.C.
\(y(1) = 5 \Rightarrow x_0 = 1 \) and \(y_0 = 5 \) so the solution curve passes through the point \((1, 5)\) \(\Rightarrow \) the I.C. in \(X(y_0) = x_0 \) becomes \(X(5) = 1 \). Applying this to eq 2 yields

\[X(5) = 2 \cdot 5^2 + c \cdot 5 = 1 \]
\[\Rightarrow 10 + c = \frac{1}{5} \rightarrow c = \frac{1}{5} - 10 = \frac{-49}{5} \] (3)

Substituting \(c = \frac{-49}{5} \) into (2) gives the unique solution curve
\[X(y) = 2y^2 - \frac{49}{5}y \]
Example 6 Find a continuous soln to the ODE with a discontinuous forcing term: \(\frac{dy}{dx} + y = f(x) \), \(f(x) = \begin{cases} 1 & 0 \leq x \leq 1 \\ -1 & x > 1 \end{cases} \) with I.C. \(y(0) = 1 \).

The eqn is already in standard form.

Notice that \(f(x) \) is discontinuous at \(x = 1 \).

We seek a cont. soln.

Step 1 Solve the ODE on each region: \(0 \leq x \leq 1 \) and \(x > 1 \).

On \([0, 1] \), \(f(x) = 1 \) and the eqn becomes

\[
\frac{dy}{dx} + y = 1 \quad (P(x) = f(x) = 1), \text{ with I.C. } y(0) = 1 \quad (1)
\]

\[M = e^{ \int 1 \, dx } = e^x \]

\[M \cdot (1) \rightarrow e^x \frac{dy}{dx} + e^x y = e^x \rightarrow \frac{d}{dx}(e^x y) = e^x \]

\[\int e^x \, dx \rightarrow e^x y = e^x + c \]

\[y = 1 + ce^{-x} \quad \text{on } [0, 1] \quad (2) \]

Since the I.C. is given at \(x = 1 \) and \(1 \) is contained in the interval \([0, 1]\) we must apply the I.C. to the soln (2).

\[1 = y(0) = 1 + ce^{0} = 1 + c \quad \Rightarrow \boxed{c = 0}. \quad (3) \]

Thus, \(y = 1 \) is the soln to the ODE on \([0, 1]\). \((4) \)

Next, we solve the ODE on the interval \(x > 1 \) \((1, \infty)\). On \(x > 1 \), \(f(x) = -1 \) and the ODE becomes

\[
\frac{dy}{dx} + y = -1 \quad (P(x) = 1, \ f(x) = -1).
\]

Since \(P(x) = 1 \) is the same as the \(P \) corresponding to the interval \([0, 1]\), we will have the same I.F. \(M = e^x \). The eqn becomes

\[e^x \frac{dy}{dx} + e^x y = -e^x \rightarrow \frac{d}{dx}(e^x y) = -e^x \rightarrow e^x y = -e^x + c \]

\[\Rightarrow \boxed{y = -1 + ce^{-x}} \quad \text{on } x > 1 \quad (5). \]

For \(y \) to be cont. on \([0, \infty)\) demand \(y(1) = y(1) \Rightarrow -1 + ce^{-1} = 1 \Rightarrow c = 2e \Rightarrow \boxed{y(x) = -1 + 2e^{1-x}} \)