Sometimes we can reduce an eqn to a Bernoulli eqn.

\[\frac{dy}{dx} = P(x) + Q(x) \cdot y + R(x) \cdot y^2 \quad (1) \]

is called a Ricatti Eqn.

In general, these eqn's are very difficult to solve. The reason for this is that in order to reduce a Ricatti eqn to a Bernoulli eqn, you must first know a particular soln! And there is no procedure for how to get this soln. This means that you must guess a soln!

\[\text{Note: If } P, Q, \text{ and } R \text{ are all polynomials then try looking for a soln of the form } y = \text{polynomial in } x \text{. (Try } y = ax^c \text{ first.)} \]

Suppose you know a particular soln \(y = y_p(x) \). Then let

\[y = u(x) + y_p(x) \]

and

\[\frac{dy}{dx} = \frac{du}{dx} + \frac{dy_p}{dx} \]

in eqn (1) to get

\[\frac{du}{dx} + \frac{dy_p}{dx} = P(x) + Q(x) \cdot (u + y_p) + R(x) \cdot (u + y_p)^2 \]

\[= P(x) + Q(x) \cdot u + Q(x) \cdot y_p + R(x) \cdot (u^2 + 2uy_p + y_p^2) \]

\[= P(x) + Q(x) \cdot y_p + R(x) \cdot y_p^2 + Q(x) \cdot u + R(x) \cdot (u^2 + 2uy_p) \]

\[\frac{dy_p}{dx} = \left(\frac{dy_p}{dx} \right) \text{ (by hypothesis)} \]

\[\rightarrow \frac{du}{dx} = (Q + 2y_p \cdot R) \cdot u = R(x) \cdot u^2 \quad \text{(Bernoulli Eqn)} \]

\[\rightarrow \frac{du^2}{dx} = (Q - 2y_p \cdot R) \cdot u^2 = R(x) \quad \text{(Let } w = u^2, \text{ dw} = -u^2 \, \text{du) } \]

\[\rightarrow -\frac{dw}{dx} = (Q - 2y_p \cdot R) \cdot w = R(x) \quad \text{ (1)} \]

\[\rightarrow \frac{d}{dx} \left(e^{\int (Q - 2y_p \cdot R) \, dx} \cdot w \right) = -Re^{\int (Q - 2y_p \cdot R) \, dx} \quad \text{Finish} \]
Converting a Ricatti eqn to a 2nd order linear ODE.

\[
\frac{dy}{dx} = P(x) + Q(x)y + R(x)y^2
\]

(1)

Note There are two trivial cases:
1. If \(R(x) = 0 \) then the eqn is 1st order linear.

\[
\frac{dy}{dx} - Q(x)y = P(x)
\]

2. If \(P(x) = 0 \) then the eqn is Bernoulli

\[
\frac{dy}{dx} = Q(x)y + R(x)y^2
\]

Notice that our substitution \(y = u + y_p \) eliminated \(P(x) \). That was the whole point of the substitution, to eliminate the term that was a factor of \(x \) alone (the term not multiplied by \(y^n \), for \(n = 1, 2 \)).

Sometimes it can be advantageous to convert the Ricatti eqn to a 2nd order linear eqn. To do this let

\[
y(x) = -\frac{w'(x)}{R(x)w(x)}
\]

(Z)

Substituting (Z) into (1) yields

\[
w'' - \left(\frac{R'(x)}{R(x)} + Q(x) \right) w' + R(x)P(x)w = 0.
\]

In practice this is not very useful unless \(P, Q, \) and \(R \) are constants. The transformation can be used in reverse (this one can be more useful in practice from a point of view that it is easier to solve a Ricatti eqn numerically). To do this let

\[
\frac{w'}{w} = -R(x)y \Rightarrow \ln w = -\int_{x}^{\infty} R(x)y dx \Rightarrow w = e^{-\int_{x}^{\infty} R(x)y dx}
\]

\[
w(x) = e^{-\int \frac{R(x)}{R'} y(x) dx}
\]
Ricatti Eq's

\[\text{Ex 1} \] Solve \(y' = y^2 - xy + 1 \).

\[\text{Soln} \] Clearly this is a Riccati eq^n with \(P = 1, Q = -x, \) and \(R = 1. \)

Since the right hand side is a polynomial in \(x \) and \(y \) of degree 2, a natural guess might be \(y = ax^2 + bx + c. \) However, this will be a bit messy when sub's fitvted into the eq^n (We'll have an eq^n in powers of \(x \)). Let's not be so general to start with. Look for a soln of the form:

\[y = ax^\alpha \]

\[\text{Note:} \] The parameter \(a \) is necessary because the eq^n is nonlinear.

Then \(\frac{dy}{dx} = y^2 - xy + 1 \) becomes

\[a\alpha x^{\alpha - 1} = a^{2\alpha} x^{2\alpha} - a^{\alpha + 1} + 1. \]

\[\Rightarrow a (a^{\alpha - 1} - a^{2\alpha} x^{\alpha + 1}) = 1 \quad \text{(This must hold for every \(x \))} \quad (2) \]

\[\text{It is not completely obvious what to do next. Let us try to get a pair of terms involving} \ x \ \text{to cancel.} \]

Want \(x^{\alpha + 1} - a^{2\alpha} = 0 \) \(\Leftrightarrow \alpha + 1 = 2\alpha \) and \(a = 1 \), \(\Leftrightarrow \alpha = 1 \) and \(a = 1 \).

Using \(\alpha = 1 \) and \(a = 1 \) in \(\text{eqn}(1) \) yields

\[1 \cdot (x^{1\cdot 1} - x^{2\cdot 1}) = x^0 + 0 = 1. \]

Thus, \(\text{\(y = x \)} \) is a particular soln.

To solve the eq^n we let

\[\text{\(y = u + y_p = u + x \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + 1 \)} \quad (3) \]

Substituting \((3) \) into \((1) \) yields

\[\frac{du}{dx} + 1 = (u + x)^2 - x(u + x) + 1 = u^2 + 2ux + x^2 - ux - x^2 + 1 = u^2 + ux + 1 \]
Riccati Eq's

\[\frac{du}{dx} = u^2 + ux \quad (\text{Bernoulli}) \]

\[\frac{u^2}{u} \rightarrow u^{-2} \frac{du}{dx} - x u^{-1} = 1 \] \hspace{1cm} (4)

Let \(w = -u^{-1} \), \(dw = -u^{-2} du \)

and substitute this into (4)

\[\frac{dw}{dx} + x w = 1 \quad (\text{linear 1st-order}), \quad P(x) = x, \quad f(x) = -1 \]

Let \(u = e^\frac{\int x \, dx}{\frac{1}{2}} = e^{\frac{x^2}{2}} \).

\[\rightarrow \frac{d}{dx} (e^{\frac{x^2}{2}} w) = e^{\frac{x^2}{2}} \]

\[\int dx \quad e^{\frac{x^2}{2}} w = \int e^{\frac{x^2}{2}} \, dx + c \]

\[\rightarrow w = e^{-\frac{x^2}{2}} \left[\int e^{\frac{x^2}{2}} \, dx + c \right] \]

Back substitution \(w = -u^{-1} \)

\[\frac{-1}{u} = \frac{\int e^{\frac{x^2}{2}} \, dx + c}{e^{\frac{x^2}{2}}} \]

\[\rightarrow u = \frac{-e^{\frac{x^2}{2}}}{\int e^{\frac{x^2}{2}} \, dx + c} \]

Back substitution

\[y = \frac{-e^{\frac{x^2}{2}}}{\int e^{\frac{x^2}{2}} \, dx + c} + x \]

Challenge problem: Solve \(y' = \frac{1}{x^4} - y^2 \).

The hard part will be finding a particular solution. The rest is straightforward.